
//read_admin_doc_first

NewsHour App Doc (v4.0.7)
09-03-22 Last updated
─

It's an offline document. There is an online documentation here. We are highly
recommending the online version. Because it will always be updated.”

1. Introduction
Make sure you have configured your admin panel first. If everything is okay, you can follow
the further steps. You can use Android Studio or Visual Studio Code.

Note: A Mac (Apple Desktop/laptop) device and an apple developer account is required for the
iOS setup. If you don’t have both of them, you can ignore the iOS steps.

https://docs.google.com/document/d/1hiA5IiHGrt-0PAud4P0A_mN28sPuXOAolv7ABkGQfoI/edit?usp=sharing

1

2. Project Setup

1. Open the source/​news_app folder on your IDE (VSCode or Android Studio) and wait
some moment to load the project.

2. Run this following command on the IDE terminal to clean the whole project first.

flutter clean

3. Run this following command on the IDE terminal to get all the required packages.

flutter pub get

Now, your project is ready for the configuration.

3. Firebase Setup for Android

3.1 Package Name Setup on Firebase

1. Go to the firebase console > Project overview page. Click on add app and then
android icon. Enter your android package name. Your package name should be like
com.your_name.your_app_name . Like com.microsoft.skype. You can use the
same package name for android & iOS. iOS doesn’t support underspace in the
package name. So, keep in mind that if you want to use the same package name for
both android & iOS.

2

2. Click on the register app and skip other steps by clicking next.

3.2 Change Package Name for Android

1. Go to your IDE and now you have to change the package name of your app. Go to

● android>app>build.gradle,
● android/app/src/debug/AndroidManifest.xml,
● android/app/src/main/AndroidManifest.xml,
● android/app/src/main/kotlin/mrblab/news_app/MainActivity.kt,
● android/app/src/profile/AndroidManifest.xml​

these files and then find & replace mrblab.news_app​by your_package_name. You
can use the search option of VSCode for that. (We didn’t use com in our package
name)

3

2. Now you have to rename two folders. Go to android/app/src/main/kotlin and
rename mrblab by your_name and inside this folder rename news_app by your
app_name. Remember this should be according to your android package name.

So, if you used com in the package name, go to this folder
android/app/src/main/kotlin via your file explorer and make a folder inside it and
name it com and move the your_name folder inside the com folder. After that your
kotlin folder should look like this.

That’s it. Your android package name setup is complete.

Now, you need to generate 2​ signing certificates​for google sign in feature.

3.3 Generate Debug Certificate
To generate a debug certificate, run this command on your terminal from your app

root directory.

For Mac Users, run

keytool -list -v \
-alias androiddebugkey -keystore ~/.android/debug.keystore

4

For Windows users, run

keytool -list -v \
-alias androiddebugkey -keystore %USERPROFILE%\.android\debug.keystore

Use ​android as a debug password when the terminal asks for a password.

N.B. If this command doesn’t work, then go to this link and copy the debug command from
there according to your os.

Copy the SHA1 certificate code and go to Firebase Console > Your Project > Project
Settings and click on the android icon and then add the SHA1 code by clicking ​add
fingerprint​button. Look at the picture below:

https://developers.google.com/android/guides/client-auth

5

3.4 Generate Release Certificate

1. To generate a release certificate, You have to generate a keystore file. To generate a
keystore file, run this command below from the root of your project directory.

For Mac users, run

keytool -genkey -v -keystore ~/key.jks -keyalg RSA -keysize 2048 -validity 10000
-alias key

For Windows users, run

keytool -genkey -v -keystore c:/Users/USER_NAME/key.jks -storetype JKS -keyalg
RSA -keysize 2048 -validity 10000 -alias key

6

2. Enter your details and remember alias key name and password. After this, you will
get a .jks keystore file.

3. Locate this file and move the file into the android/app folder and copy the path by
right clicking on the key.jks file.

4. Then go to android/key.properties​ file and replace the path of the keystore file of
yours. Then also replace the ​password​and ​key alias name​ which you have
inputted to generate the keystore file.

Now you can generate a release certificate, To do that,

1. Run with replacing your alias_name and keystore_location.

keytool -list -v -keystore keystore_location -alias alias_name

2. After that you will get a SHA1 code. Copy that code and add to your firebase console
project settings where you previously added a debug SHA1 code. That’s it.

7

3.5 Google Sign In Setup
Now you have to set up google sign in & email sign in. To do that,

1. Go to firebase console>your project>authentication>Sign-in-method and enable
both email/password and google and save it.

2. You have to configure some stuff for google sign in. Go to this u​rl.​

3. Make sure you are signed in with the same account with which you have created the

Firebase project.

4. Also, make sure that on the top-left corner, your project is selected for which you

are filling this consent.

https://console.developers.google.com/apis/credentials/consent

8

5. Go to Credentials → OAuth consent screen tab and start filling the form.
6. Enter “Application name”, “Application logo” & “Support email”.

9

7. Then, scroll down and fill in the Application Homepage link, Application Privacy
Policy link and Application Terms of Services link.

8. In all these places, you have to enter the same link starting with http:// then your
app domain name which I have marked with green below.

9. Click on Save. That's it. You have completed your google signin setup.

10

3.6 Facebook Login Setup

1. Now you have set up facebook sign in. To do that, Go to this ​url.​

2. Go My apps > Create App.

3. Enter App name and email and go to Dashboard tab.

4. Scroll down on the right pane until you reach ‘Add a product’, select Facebook

Login

5. You will be redirected to the quick start page.

6. Select Android. Skip 1 & 2.

7. Enter your_package_name in the package option and enter

your_package_name.MainActivity​ in the activity option.

8. For the next step, you need to generate two hash ids. To do that, run the following

commands on the terminal.

https://developers.facebook.com/

11

For Mac Users,

keytool -exportcert -alias androiddebugkey -keystore ~/.android/debug.keystore |
openssl sha1 -binary | openssl base64

For Window users,

keytool -exportcert -alias androiddebugkey -keystore
"C:\Users\USERNAME\.android\debug.keystore" |
"PATH_TO_OPENSSL_LIBRARY\bin\openssl" sha1 -binary |
"PATH_TO_OPENSSL_LIBRARY\bin\openssl" base64

9. Use ​android​ as a debug password. After that you will get a hash id like this.

10. For release hash id, run this following command by replacing your alias key name
and keystore location. You can get these from your a​ndroid/key.properties ​file.

keytool -exportcert -alias YOUR_RELEASE_KEY_ALIAS -keystore YOUR_RELEASE_KEY_PATH
| openssl sha1 -binary | openssl base64

11. After that you will get another hash id. Now, copy and paste them in the next steps
of the facebook developer site. Like this,

12. Skip all the steps by clicking next.

12

13. Now go to settings tab & copy both app id and app secret key.

14. Now go to firebase console > your project > authentication > Sign-in-method and

click on facebook, enable it and paste both app id and app secret key and save it.

15. Now go to project settings and click on the android icon and download

​google-service.json file.

16. Now go to ​android/app​directory and paste the google-service.json​file here.

17. Now go to ​android/app/src/main/res/values/strings.xml​this directory and
change the app name, app_id and fb+app_id.

13

That’s it. Android setup for Firebase database, Google Sign in & Facebook login setup is
complete.

4. Firebase Setup for iOS

1. Go to the firebase console > Project overview page. Click on add app and then
android icon. Enter your package name. You can use the same package name that
you have used for android.

14

2. Click on the register app and skip others by clicking next.

3. Now go to project settings and click on ios and download the

GoogleService-info.plist​ file.

4. Then go to i​os/Runner directory​ and paste the file here.

5. Now, Open the iOS folder on Xcode by right clicking on the iOS folder from VSCode

or Android Studio and go to the runner folder and move the

GoogleService-info.plist​ file here. You will get a popup and click yes or confirm the

popup message.

6. Now, open the ​GoogleService-info.plist​file from your IDE or from Xcode and copy

the R​EVERSED_CLIENT_ID. (See the picture below)​

7. Go to i​os/Runner/Info.plist​ file and replace the R​EVERSED_CLIENT_ID here.

15

8. Now you have to change the iOS package name. To do that, again go to
i​os/Runner/Info.plist​ file and replace CFBundleIdentifier value with your iOS
package name. (See the picture below)

That’s it., Your Firebase & Google Sign In for iOS setup is complete.

4.1 Facebook Login for iOS Setup

1. Now go to developers.facebook.com again and navigate to your project and click

facebook login > quick setup > ios icon.

2. Skip 1 & go to step 2.

3. Enter your package name in the b​undle ID ​option & skip others by clicking next.

4. Now, go to the ios/Runner/Info.plist file and replace your fb app id and app name

on fb.

16

5. That’s it. iOS setup for Facebook Sign In is complete.

4.2 Apple Login Setup (Only for iOS)
To do that, you need an paid apple developer account and xcode app on your mac.

1. From your IDE, Right click on the ios folder and click on open on xcode and then go
to runner > sign in & capability tab.

17

2. Add Sign in with Apple. We already did this in the project. If this is not available in

the project, do this by yourself.

3. No go to your firebase console > your project > authentication page and enable

apple sign in option. You don’t have to put anything in the text fields.

18

That’s it. One more thing, when you configure Firebase push notification for iOS in the next
step, make sure you have also tik on the Sign In with Apple option in the identifier on
apple developer page.

That’s it. Your database setup is complete.

5. Firebase Push Notifications Setup
1. For Android, You don’t have to do anything. We already integrated the procedures in

the project.

2. For iOS, Go to this link and follow the instructions. This is a well written doc from
Flutter Team.

6. Multi-language setup
You can skip this setup now. This is not a mandatory setup to run this app.

So, we have used 3 languages in this app. English, Spanish & Arabic. You can do as much as
you can. We are assuming that you want to add your own country language. You need to
know about your two letter language code. Like, English language code is en and Spanish
language code is es . You can search for your language code on google.

1. First go to the assets/translations folder from your IDE. Add a .json file here with
your_language_code.json name. Now go to assets/translations/en.json file and
copy everything from this file and paste to your_language_code.json file.

https://firebase.flutter.dev/docs/messaging/apple-integration

19

2. Now, Rename the all right side strings. Do not edit left side strings. These are the
keys. Look at the es.json file and you will understand what to do.

3. Now go to lib/main.dart file and add your language code to supportedLocals.

Your code will be look like this :

supportedLocales: [Locale('en'), Locale('es'), Locale('ar'), Locale('your_language_code')],

4. You can edit the startLocale by replacing en by your_language_code if you want to
add your default language to your language.

5. Now go to lib/config/config.dart and add your Language name at the bottom of
the list by adding a comma.

20

6. Now go to lib/widgets/language.dart file and enable the disable lines by removing
slashes and rename your_language_code and language_name that you added in
the list..

7. For Android, you don’t have to do anything.

8. For iOS, go to ios/Runner/Info.plist and add your language code in a string.

9. Add <string>your_language_code</string> inside the array.

10. That’s it. Your multi-language setup is complete. You can add as many languages as

you want by following these steps.

21

11. To remove any language, first go to the asset/translations folder and delete the

language_code.json file that you want. (You shouldn't delete the en.json file because

this is the default language). Now go to lib/main.dart and remove the locale from

the supportedLocale line and then go to lib/widgets/language.dart file and

remove the else if section of language code that you want to delete and finally go to

ios/Runner/Info.plist and remove the string. That’s it.

7. Ads Setup
You can skip this setup for now and can configure later. We have enabled admob ads by
default with test ad unit ids. You can enable/disable ads from the admin panel.

So, We have used both admob and facebook ads in this app. But you can use only one at a
time. Either admob or facebook ads. We recommend you to use admob ads because they
provide higher revenue than any other ads networks. Use facebook ads if only your admob
account is suspended. By the way, that was just a suggestion from us. The choice is yours.

We have used both Interstitial ads and banner ads. Interstitial ads will show when the
video loaded successfully and banner ads will show at the bottom of the image article
screen.

1. You can control ads from the admin panel. We have added an option to turn off/on
ads at any time you want. Don’t enable ads on the admin panel if you are not
enabled ads in the app.

2. We have applied ads into 2 screens.

Article_details.dart - banner ad ,

video_article_details.dart - interstitial ad.

22

7.1 Admob Setup
We have used admob ads by default with test unit ids. To test the ads, you should test with
the test unit ids. Before releasing the app for production, make sure you have changed the
app ids and ad unit ids with yours. Admob is applied by default. So you don’t have to do
anything for admob.

Follow these steps for production (release):

1. For Android, Go to android/app/src/main/AndroidManifest.xml file and replace
with your admob app id of yours which you will get from your admob account. You
can still use this app id for testing purposes. Make sure you have replaced your app
id before releasing the app in the play/app store.

2. For iOS, go to ios/Runner/Info.plist file and replace your admob app id of ios.

<key>GADApplicationIdentifier</key>
<string>admob app id</string>

3. Go to lib/config/ad_config.dart file and replace admob app ids & ad unit ids with
yours. Ignore the iOS ids if you don’t want to make the app for iOS.

23

That’s it. Your admob setup is complete.

7.2 Facebook Ads Setup
Ignore this if you have added admob.

1. First, you have to place your ad ids. Go to the lib/config/ad_config.dart file and
replace the fb ad unit ids with yours.

2. Now you have to disable admob procedures and enable fb procedures. Go to lib
blocs/ad_bloc.dart file and disable where admob is quoted and enable where fb is
quoted. You can disable any procedures or line by adding two slash (//) at the left
and enable by removing two slash (//) from the left. Look at the picture below.

24

3. You have enabled fb interstitial ads and now you have to add fb banner ads. Go to
the lib/pages/article_details.dart file and disable the admob line and enable the fb
line. Look at the picture below.

That’s it. Your facebook ad setup is complete. Keep in mind that you can’t test ads on
emulators for fb ads. You have to use a real device.

25

8. Category Setup
You have to add 4 categories here which you added in the admin panel. This is mandatory
for UI purposes. Now go to lib/config/config.dart file and add your own 4 categories that
you have added on the admin panel previously. Make sure the category names are the
same.

9. Other Setup

1. Go to l​ib/models/config.dart​file and change all of your details.
2. Change App name,
3. Support Email,
4. Privacy policy url (Ignore this for now if you are not going to release now).
5. Your website url (same as before)
6. iOS app ID (Only for iOS and you can ignore this for now)
7. Change fb page url, youtube channel url and twitter url with yours.

26

10. Change Splash Icon
To change the splash icon, you have to upload your own splash icon. The icon should be in
the .png format and make sure you have renamed it to splash . Go to the
lib/assets/images folder and drop the icon here and replace it with our icon. That’s it.

11. Change App Theme Color
Go to the lib/config/config.dart file and edit the appThemeColor. We have used
deepPurpleAcent color.You can use any color and the changes will happen in whole app.

27

12. Change App Name for Android

1. Go to a​ndroid/app/src/main/AndroidManifest.xml​file and Change your app name.

Also go to lib/utils/app_name.dart and change the app name.

13. Change App Name for iOS

1. Go to i​os/Runner/Info.plist​ file and Change your app name.

28

14. Change the App Icon
1. Go to the asset folder and delete the default icon (icon.png).
2. Now upload your app icon as png in the assets/images folder and rename it to

icon.png
3. Now run the following command on the terminal,

flutter pub get
flutter pub run flutter_launcher_icons:main

That’s it.. For more info, visit this site.

So Your Setup is 100% complete now.

15. Run the app

Run this command on the terminal.

flutter clean

And After that run the following command to run this app on your physical or emulator
devices.

flutter run

Test if everything is okay or not.

https://pub.dev/packages/flutter_launcher_icons#-readme-tab-

29

16. Release the Android App on Google Play Store
You have done all the things that are required for android release. To Test the release
android app, run the following command on the terminal.

flutter build apk --split-per-abi

You will get 3 apk files from the build/app/output/apk/release folder. You can test the v7
version of the apk file. If you want to publish the app in the google play store, don’t upload
any of the following files. Use an appbundle file which is recommended by Google. To
generate an appbundle, run the following command on terminal :

flutter build appbundle

After that, you will get an .aab file in the build/app/output/appbundle/release folder.

Now you can upload this .aab file to the google play store.

17. To Release the iOS app on App Store
Follow the official doc from flutter team here.

https://flutter.dev/docs/deployment/ios

30

That’s it. We know that you are so tired right now. Take some rest. Everything is complete
now.

So, That's it. If you face any problem, please contact us. If you are not a flutter developer a
If you love our work then don't forget to submit a review on codecanyon market.

Thanks

MRB Lab

Contact: mrblab24@gmail.com

mailto:mrblab24@gmail.com

31

18. Issues & Fixes

1. Google Sign In issue after publishing the app on Google Play Store:

Solution: Follow this doc

https://docs.google.com/document/d/1VlBx7bTXel-lukBGcrjSm183ivgRtuAaCtryG2x_ryE/edit?usp=sharing

